Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 1

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\sum_{r=1}^{1} r=1 \\
\text { RHS } & =\frac{1}{2}(1)(2)=1
\end{aligned}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k} r=\frac{1}{2} k(k+1)$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1} r & =1+2+3+\geq+k+(k+1) \\
& =\frac{1}{2} k(k+1)+(k+1) \\
& =\frac{1}{2}(k+1)(k+2) \\
& =\frac{1}{2}(k+1)(k+1+1)
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.

If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 2

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\sum_{r=1}^{1} r^{3}=1 \\
\text { RHS } & =\frac{1}{4}(1)^{2}(2)^{2}=\frac{1}{4}(4)=1
\end{aligned}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k} r^{3}=\frac{1}{4} k^{2}(k+1)^{2}$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1} r^{3} & =1^{3}+2^{3}+3^{3}+\geq+k^{3}+(k+1)^{3} \\
& =\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3} \\
& =\frac{1}{4}(k+1)^{2}\left[k^{2}+4(k+1)\right] \\
& =\frac{1}{4}(k+1)^{2}\left(k^{2}+4 k+4\right) \\
& =\frac{1}{4}(k+1)^{2}(k+2)^{2} \\
& =\frac{1}{4}(k+1)^{2}(k+1+1)^{2}
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.
If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 3

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$\sum_{r=1}^{n} r(r-1)=\frac{1}{3} n(n+1)(n-1)$

Solution:

$$
\begin{gathered}
n=1 ; \text { LHS }=\sum_{r=1}^{1} r(r-1)=1(0)=0 \\
\text { RHS }=\frac{1}{3}(1)(2)(0)=0
\end{gathered}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k} r(r-1)=\frac{1}{3} k(k+1)(k-1)$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r-1) & =1(0)+2(1)+3(2)+\geq+k(k-1)+(k+1) k \\
& =\frac{1}{3} k(k+1)(k-1)+(k+1) k \\
& =\frac{1}{3} k(k+1)[(k-1)+3] \\
& =\frac{1}{3} k(k+1)(k+2) \\
& =\frac{1}{3}(k+1)(k+2) k \\
& =\frac{1}{3}(k+1)(k+1+1)(k+1-1)
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.

If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 4

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$(1 \times 6)+(2 \times 7)+(3 \times 8)+\geq+n(n+5)=\frac{1}{3} n(n+1)(n+8)$

Solution:

The identity $(1 \times 6)+(2 \times 7)+(3 \times 8)+\geq+n(n+5)=\frac{1}{3} n(n+1)(n+8)$ can be rewritten as $\sum_{r=1}^{n} r(r+5)=\frac{1}{3} n(n+1)(n+8)$.

$$
\begin{aligned}
n=1 ; \text { LHS } & =\sum_{r=1}^{1} r(r+5)=1(6)=6 \\
\text { RHS } & =\frac{1}{3}(1)(2)(9)=\frac{1}{3}(18)=6
\end{aligned}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k} r(r+5)=\frac{1}{3} k(k+1)(k+8)$.
With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r+5) & =1(6)+2(7)+3(8)+\geq+k(k+5)+(k+1)(k+6) \\
& =\frac{1}{3} k(k+1)(k+8)+(k+1)(k+6) \\
& =\frac{1}{3}(k+1)[k(k+8)+3(k+6)] \\
& =\frac{1}{3}(k+1)\left[k^{2}+8 k+3 k+18\right] \\
& =\frac{1}{3}(k+1)\left[k^{2}+11 k+18\right] \\
& =\frac{1}{3}(k+1)(k+9)(k+2) \\
& =\frac{1}{3}(k+1)(k+2)(k+9) \\
& =\frac{1}{3}(k+1)(k+1+1)(k+1+8)
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.

If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 5

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$\sum_{r=1}^{n} r(3 r-1)=n^{2}(n+1)$

Solution:

$$
\begin{gathered}
n=1 ; \text { LHS }=\sum_{r=1}^{1} r(3 r-1)=1(2)=2 \\
\text { RHS }=1^{2}(2)=(1)(2)=2
\end{gathered}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k} r(3 r-1)=k^{2}(k+1)$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(3 r-1) & =1(2)+2(5)+3(8)+\geq+k(3 k-1)+(k+1)(3(k+1)-1) \\
& =k^{2}(k+1)+(k+1)(3 k+3-1) \\
& =k^{2}(k+1)+(k+1)(3 k+2) \\
& =(k+1)\left[k^{2}+3 k+2\right] \\
& =(k+1)(k+2)(k+1) \\
& =(k+1)^{2}(k+2) \\
& =(k+1)^{2}(k+1+1)
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.

If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 6

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$\sum_{r=1}^{n}(2 r-1)^{2}=\frac{1}{3} n\left(4 n^{2}-1\right)$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\sum_{r=1}^{1}(2 r-1)^{2}=1^{2}=1 \\
\text { RHS } & =\frac{1}{3}(1)(4-1)=\frac{1}{3}(1)(3)=1
\end{aligned}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.
Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k}(2 r-1)^{2}=\frac{1}{3} k\left(4 k^{2}-1\right)=\frac{1}{3} k(2 k+1)(2 k-1)$.
With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1}(2 r-1)^{2} & =1^{2}+3^{2}+5^{2}+\geq+(2 k-1)^{2}+(2(k+1)-1)^{2} \\
& =\frac{1}{3} k\left(4 k^{2}-1\right)+(2 k+2-1)^{2} \\
& =\frac{1}{3} k\left(4 k^{2}-1\right)+(2 k+1)^{2} \\
& =\frac{1}{3} k(2 k+1)(2 k-1)+(2 k+1)^{2} \\
& =\frac{1}{3}(2 k+1)[k(2 k-1)+3(2 k+1)] \\
& =\frac{1}{3}(2 k+1)\left[2 k^{2}-k+6 k+3\right] \\
& =\frac{1}{3}(2 k+1)\left[2 k^{2}+5 k+3\right] \\
& =\frac{1}{3}(2 k+1)(k+1)(2 k+3) \\
& =\frac{1}{3}(k+1)(2 k+3)(2 k+1) \\
& =\frac{1}{3}(k+1)[2(k+1)+1][2(k+1)-1] \\
& =\frac{1}{3}(k+1)\left[4(k+1)^{2}-1\right]
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.
If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 7

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$\sum_{r=1}^{n} 2^{r}=2^{n+1}-2$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\sum_{r=1}^{1} 2^{r}=2^{1}=2 \\
\text { RHS } & =2^{2}-2=4-2=2
\end{aligned}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k} 2^{r}=2^{k+1}-2$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1} 2^{r} & =2^{1}+2^{2}+2^{3}+\geq+2^{k}+2^{k+1} \\
& =2^{k+1}-2+2^{k+1} \\
& =2\left(2^{k+1}\right)-2 \\
& =2^{1}\left(2^{k+1}\right)-2 \\
& =2^{1+k+1}-2 \\
& =2^{k+1+1}-2
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.

If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 8

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$\sum_{r=1}^{n} 4^{r-1}=\frac{4^{n}-1}{3}$

Solution:

$$
\begin{gathered}
n=1 ; \text { LHS }=\sum_{r=1}^{1} 4^{r-1}=4^{0}=1 \\
\text { RHS }=\frac{4-1}{3}=\frac{3}{3}=1
\end{gathered}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k} 4^{r-1}=\frac{4^{k}-1}{3}$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1} 4^{r-1} & =4^{0}+4^{1}+4^{2}+\geq+4^{k-1}+4^{k+1-1} \\
& =\frac{4^{k}-1}{3}+4^{k} \\
& =\frac{4^{k}-1}{3}+\frac{3\left(4^{k}\right)}{3} \\
& =\frac{4^{k}-1+3\left(4^{k}\right)}{3} \\
& =\frac{4\left(4^{k}\right)-1}{3} \\
& =\frac{4^{1}\left(4^{k}\right)-1}{3} \\
& =\frac{4^{k+1}-1}{3}
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.
If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 9

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$\sum_{r=1}^{n} r(r!)=(n+1)!-1$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\sum_{r=1}^{1} r(r!)=1(1!)=1(1)=1 \\
\text { RHS } & =2!-1=2-1=1
\end{aligned}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k} r(r!)=(k+1)!-1$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r!) & =1(1!)+2(2!)+3(3!)+\geq+k(k!)+(k+1)[(k+1)!] \\
& =(k+1)!-1+(k+1)[(k+1)!] \\
& =(k+1)!+(k+1)[(k+1)!]-1 \\
& =(k+1)![1+k+1]-1 \\
& =(k+1)!(k+2)-1 \\
& =(k+2)!-1 \\
& =(k+1+1)!-1
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.

If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise A, Question 10

Question:

Prove by the method of mathematical induction, the following statement for $n \in \mathbb{Z}^{+}$.
$\sum_{r=1}^{2 n} r^{2}=\frac{1}{3} n(2 n+1)(4 n+1)$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\sum_{r=1}^{2} r^{2}=1^{2}+2^{2}=1+4=5 \\
\text { RHS } & =\frac{1}{3}(1)(3)(5)=\frac{1}{3}(15)=5
\end{aligned}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{2 k} r^{2}=\frac{1}{3} k(2 k+1)(4 k+1)$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{2(k+1)} r^{2}=\sum_{r=1}^{2 k+2} r^{2} & =1^{2}+2^{2}+3^{2}+\geq+k^{2}+(2 k+1)^{2}+(2 k+2)^{2} \\
& =\frac{1}{3} k(2 k+1)(4 k+1)+(2 k+1)^{2}+(2 k+2)^{2} \\
& =\frac{1}{3} k(2 k+1)(4 k+1)+(2 k+1)^{2}+4(k+1)^{2} \\
& =\frac{1}{3}(2 k+1)[k(4 k+1)+3(2 k+1)]+4(k+1)^{2} \\
& =\frac{1}{3}(2 k+1)\left[4 k^{2}+7 k+3\right]+4(k+1)^{2} \\
& =\frac{1}{3}(2 k+1)(4 k+3)(k+1)+4(k+1)^{2} \\
& =\frac{1}{3}(k+1)[(2 k+1)(4 k+3)+12(k+1)] \\
& =\frac{1}{3}(k+1)\left[8 k^{2}+6 k+4 k+3+12 k+12\right] \\
& =\frac{1}{3}(k+1)\left[8 k^{2}+22 k+15\right] \\
& =\frac{1}{3}(k+1)(2 k+3)(4 k+5) \\
& =\frac{1}{3}(k+1)[2(k+1)+1][4(k+1)+1]
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.

If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 1

Question:

Use the method of mathematical induction to prove the following statement for $n \in \mathbb{Z}^{+}$.
$8^{n}-1$ is divisible by 7

Solution:

Let $\mathrm{f}(n)=8^{n}-1$, where $n \in \mathbb{Z}^{+}$.
$\therefore f(1)=8^{1}-1=7$, which is divisible by 7 .
$\therefore \mathrm{f}(n)$ is divisible by 7 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=8^{k}-1$ is divisible by 7 for $k \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(k+1)=8^{k+1}-1$
$=8^{k} .8^{1}-1$

$$
=8\left(8^{k}\right)-1
$$

$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[8\left(8^{k}\right)-1\right]-\left[8^{k}-1\right]$

$$
\begin{aligned}
& =8\left(8^{k}\right)-1-8^{k}+1 \\
& =7\left(8^{k}\right)
\end{aligned}
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+7\left(8^{k}\right)$

As both $\mathrm{f}(k)$ and $7\left(8^{k}\right)$ are divisible by 7 then the sum of these two terms must also be divisible by 7 . Therefore $\mathrm{f}(n)$ is divisible by 7 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 7 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 7 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 7 when $n=1, \mathrm{f}(n)$ is also divisible by 7 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 2

Question:

Use the method of mathematical induction to prove the following statement for $n \in \mathbb{Z}^{+}$.
$3^{2 n}-1$ is divisible by 8

Solution:

Let $\mathrm{f}(n)=3^{2 n}-1$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=3^{2(1)}-1=9-1=8$, which is divisible by 8 .
$\therefore \mathrm{f}(n)$ is divisible by 8 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=3^{2 k}-1$ is divisible by 8 for $k \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(k+1)=3^{2(k+1)}-1$
$=3^{2 k+2}-1$
$=3^{2 k} \cdot 3^{2}-1$
$=9\left(3^{2 k}\right)-1$
$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[9\left(3^{2 k}\right)-1\right]-\left[3^{2 k}-1\right]$
$=9\left(3^{2 k}\right)-1-3^{2 k}+1$
$=8\left(3^{2 k}\right)$
$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+8\left(3^{2 k}\right)$

As both $\mathrm{f}(k)$ and $8\left(3^{2 k}\right)$ are divisible by 8 then the sum of these two terms must also be divisible by 8 . Therefore $\mathrm{f}(n)$ is divisible by 8 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 8 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 8 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 8 when $n=1, \mathrm{f}(n)$ is also divisible by 8 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 3

Question:

Use the method of mathematical induction to prove the following statement for $n \in \mathbb{Z}^{+}$.
$5^{n}+9^{n}+2$ is divisible by 4

Solution:

Let $\mathrm{f}(n)=5^{n}+9^{n}+2$, where $n \in \mathbb{Z}^{+}$.
$\therefore f(1)=5^{1}+9^{1}+2=5+9+2=16$, which is divisible by 4 .
$\therefore \mathrm{f}(n)$ is divisible by 4 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=5^{k}+9^{k}+2$ is divisible by 4 for $k \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(k+1)=5^{k+1}+9^{k+1}+2$
$=5^{k} \cdot 5^{1}+9^{k} \cdot 9^{1}+2$

$$
=5\left(5^{k}\right)+9\left(9^{k}\right)+2
$$

$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[5\left(5^{k}\right)+9\left(9^{k}\right)+2\right]-\left[5^{k}+9^{k}+2\right]$

$$
=5\left(5^{k}\right)+9\left(9^{k}\right)+2-5^{k}-9^{k}-2
$$

$$
=4\left(5^{k}\right)+8\left(9^{k}\right)
$$

$$
=4\left[5^{k}+2(9)^{k}\right]
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+4\left[5^{k}+2(9)^{k}\right]$
As both $\mathrm{f}(k)$ and $4\left[5^{k}+2(9)^{k}\right]$ are divisible by 4 then the sum of these two terms must also be divisible by 4 . Therefore f (n) is divisible by 4 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 4 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 4 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 4 when $n=1, \mathrm{f}(n)$ is also divisible by 4 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 4

Question:

Use the method of mathematical induction to prove the following statement for $n \in \mathbb{Z}^{+}$.
$2^{4 n}-1$ is divisible by 15

Solution:

Let $\mathrm{f}(n)=2^{4 n}-1$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=2^{4(1)}-1=16-1=15$, which is divisible by 15 .
$\therefore \mathrm{f}(n)$ is divisible by 15 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=2^{4 k}-1$ is divisible by 15 for $k \in \mathbb{Z}^{+}$.

$$
\begin{aligned}
\therefore \mathrm{f}(k+1) & =2^{4(k+1)}-1 \\
& =2^{4 k+4}-1 \\
& =2^{4 k} \cdot 2^{4}-1 \\
& =16\left(2^{4 k}\right)-1
\end{aligned}
$$

$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[16\left(2^{4 k}\right)-1\right]-\left[2^{4 k}-1\right]$
$=16\left(2^{4 k}\right)-1-2^{4 k}+1$

$$
=15\left(8^{k}\right)
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+15\left(8^{k}\right)$

As both $\mathrm{f}(k)$ and $15\left(8^{k}\right)$ are divisible by 15 then the sum of these two terms must also be divisible by 15 . Therefore $\mathrm{f}(n)$ is divisible by 15 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 15 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 15 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 15 when $n=1, \mathrm{f}(n)$ is also divisible by 15 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 5

Question:

Use the method of mathematical induction to prove the following statement for $n \in \mathbb{Z}^{+}$.
$3^{2 n-1}+1$ is divisible by 4

Solution:

Let $\mathrm{f}(n)=3^{2 n-1}+1$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=3^{2(1)-1}+1=3+1=4$, which is divisible by 4 .
$\therefore \mathrm{f}(n)$ is divisible by 4 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=3^{2 k-1}+1$ is divisible by 4 for $k \in \mathbb{Z}^{+}$.

$$
\begin{aligned}
\therefore \mathrm{f}(k+1) & =3^{2(k+1)-1}+1 \\
& =3^{2 k+2-1}+1 \\
& =3^{2 k-1} \cdot 3^{2}+1 \\
& =9\left(3^{2 k-1}\right)+1
\end{aligned}
$$

$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[9\left(3^{2 k-1}\right)+1\right]-\left[3^{2 k-1}+1\right]$ $=9\left(3^{2 k-1}\right)+1-3^{2 k-1}-1$ $=8\left(3^{2 k-1}\right)$
$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+8\left(3^{2 k-1}\right)$
As both $\mathrm{f}(k)$ and $8\left(3^{2 k-1}\right)$ are divisible by 4 then the sum of these two terms must also be divisible by 4 . Therefore $\mathrm{f}(n)$ is divisible by 4 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 4 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 4 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 4 when $n=1, \mathrm{f}(n)$ is also divisible by 8 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 6

Question:

Use the method of mathematical induction to prove the following statement for $n \in \mathbb{Z}^{+}$.
$n^{3}+6 n^{2}+8 n$ is divisible by 3

Solution:

Let $\mathrm{f}(n)=n^{3}+6 n^{2}+8 n$, where $n \geq 1$ and $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=1+6+8=15$, which is divisible by 3 .
$\therefore \mathrm{f}(n)$ is divisible by 3 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=k^{3}+6 k^{2}+8 k$ is divisible by 3 for $k \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(k+1)=(k+1)^{3}+6(k+1)^{2}+8(k+1)$

$$
=k^{3}+3 k^{2}+3 k+1+6\left(k^{2}+2 k+1\right)+8(k+1)
$$

$$
=k^{3}+3 k^{2}+3 k+1+6 k^{2}+12 k+6+8 k+8
$$

$$
=k^{3}+9 k^{2}+23 k+15
$$

$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[k^{3}+9 k^{2}+23 k+15\right]-\left[k^{3}+6 k^{2}+8 k\right]$

$$
=3 k^{2}+15 k+15
$$

$$
=3\left(k^{2}+5 k+5\right)
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+3\left(k^{2}+5 k+5\right)$

As both $\mathrm{f}(k)$ and $3\left(k^{2}+5 k+5\right)$ are divisible by 3 then the sum of these two terms must also be divisible by 3 .

Therefore $\mathrm{f}(n)$ is divisible by 3 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 3 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 3 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 3 when $n=1, \mathrm{f}(n)$ is also divisible by 3 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 7

Question:

Use the method of mathematical induction to prove the following statement for $n \in \mathbb{Z}^{+}$.
$n^{3}+5 n$ is divisible by 6

Solution:

Let $\mathrm{f}(n)=n^{3}+5 n$, where $n \geq 1$ and $n \in \mathbb{Z}^{+}$.
$\therefore f(1)=1+5=6$, which is divisible by 6 .
$\therefore \mathrm{f}(n)$ is divisible by 6 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=k^{3}+5 k$ is divisible by 6 for $k \in \mathbb{Z}^{+}$.

$$
\begin{aligned}
& \therefore \mathrm{f}(k+1)=(k+1)^{3}+5(k+1) \\
& =k^{3}+3 k^{2}+3 k+1+5(k+1) \\
& =k^{3}+3 k^{2}+3 k+1+5 k+5 \\
& =k^{3}+3 k^{2}+8 k+6 \\
& \begin{aligned}
\therefore \mathrm{f}(k+1)-\mathrm{f}(k) & =\left[k^{3}+3 k^{2}+8 k+6\right]-\left[k^{3}+5 k\right] \\
& =3 k^{2}+3 k+6 \\
& =3 k(k+1)+6 \\
& =3(2 m)+6 \\
& =6 m+6 \\
& =6(m+1)
\end{aligned}
\end{aligned}
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+6(m+1)$.

As both $\mathrm{f}(k)$ and $6(m+1)$ are divisible by 6 then the sum of these two terms must also be divisible by 6 . Therefore $\mathrm{f}(n)$ is divisible by 6 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 6 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 6 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 6 when $n=1, \mathrm{f}(n)$ is also divisible by 6 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 8

Question:

Use the method of mathematical induction to prove the following statement for $n \in \mathbb{Z}^{+}$.
$2^{n} \cdot 3^{2 n}-1$ is divisible by 17

Solution:

Let $\mathrm{f}(n)=2^{n} .3^{2 n}-1$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=2^{1} \cdot 3^{2(1)}-1=2(9)-1=18-1=17$, which is divisible by 17 .
$\therefore \mathrm{f}(n)$ is divisible by 17 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=2^{k} .3^{2 k}-1$ is divisible by 17 for $k \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(k+1)=2^{k+1} \cdot 3^{2(k+1)}-1$

$$
=2^{k}(2)^{1}(3)^{2 k}(3)^{2}-1
$$

$$
=2^{k}(2)^{1}(3)^{2 k}(9)-1
$$

$$
=18\left(2^{k} \cdot 3^{2 k}\right)-1
$$

$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[18\left(2^{k} \cdot 3^{2 k}\right)-1\right]-\left[2^{k} \cdot 3^{2 k}-1\right]$

$$
=18\left(2^{k} \cdot 3^{2 k}\right)-1-2^{k} \cdot 3^{2 k}+1
$$

$$
=17\left(2^{k} .3^{2 k}\right)
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+17\left(2^{k} \cdot 3^{2 k}\right)$

As both $\mathrm{f}(k)$ and $17\left(2^{k} .3^{2 k}\right)$ are divisible by 17 then the sum of these two terms must also be divisible by 17 .

Therefore $\mathrm{f}(n)$ is divisible by 17 when $n=k+1$.
If $\mathrm{f}(n)$ is divisible by 17 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 17 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 17 when $n=1, \mathrm{f}(n)$ is also divisible by 17 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 9

Question:

$\mathrm{f}(n)=13^{n}-6^{n}, n \in \mathbb{Z}^{+}$.
a Express for $k \in \mathbb{Z}^{+}, \mathrm{f}(k+1)-6 \mathrm{f}(k)$ in terms of k, simplifying your answer.
b Use the method of mathematical induction to prove that $\mathrm{f}(n)$ is divisible by 7 for all $n \in \mathbb{Z}^{+}$.

Solution:

a

$$
\begin{aligned}
\mathrm{f}(k+1) & =13^{k+1}-6^{k+1} \\
& =13^{k} \cdot 13^{1}-6^{k} \cdot 6^{1} \\
& =13\left(13^{k}\right)-6\left(6^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{f}(k+1)-6 \mathrm{f}(k) & =\left[13\left(13^{k}\right)-6\left(6^{k}\right)\right]-6\left[13^{k}-6^{k}\right] \\
& =13\left(13^{k}\right)-6\left(6^{k}\right)-6\left(13^{k}\right)+6\left(6^{k}\right) \\
& =7\left(13^{k}\right)
\end{aligned}
$$

b $\mathrm{f}(n)=13^{n}-6^{n}$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=13^{1}-6^{1}=7$, which is divisible by 7 .
$\therefore \mathrm{f}(n)$ is divisible by 7 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=13^{k}-6^{k}$ is divisible by 7 for $k \in \mathbb{Z}^{+}$.

From (a), $\mathrm{f}(k+1)=6 \mathrm{f}(k)+7\left(13^{k}\right)$

As both $6 \mathrm{f}(k)$ and $7\left(13^{k}\right)$ are divisible by 7 then the sum of these two terms must also be divisible by 7 . Therefore $\mathrm{f}(n)$ is divisible by 7 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 7 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 7 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 7 when $n=1, \mathrm{f}(n)$ is also divisible by 7 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 10

Question:

$\mathrm{g}(n)=5^{2 n}-6 n+8, n \in \mathbb{Z}^{+}$.
a Express for $k \in \mathbb{Z}^{+}, \mathrm{g}(k+1)-25 \mathrm{~g}(k)$ in terms of k, simplifying your answer.
b Use the method of mathematical induction to prove that $\mathrm{g}(n)$ is divisible by 9 for all $n \in \mathbb{Z}^{+}$.

Solution:

a

$$
\begin{aligned}
\mathrm{g}(k+1) & =5^{2(k+1)}-6(k+1)+8 \\
& =5^{2 k} .5^{2}-6 k-6+8 \\
& =25\left(5^{2 k}\right)-6 k+2
\end{aligned} \begin{aligned}
\therefore \mathrm{g}(k+1)-25 \mathrm{~g}(k) & =\left[25\left(5^{2 k}\right)-6 k+2\right]-25\left[5^{2 k}-6 k+8\right] \\
& =25\left(5^{2 k}\right)-6 k+2-25\left(5^{2 k}\right)+150 k-200 \\
& =144 k-198
\end{aligned}
$$

b
$\mathrm{g}(n)=5^{2 n}-6 n+8$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{g}(1)=5^{2}-6(1)+8=25-6+8=27$, which is divisible by 9 .
$\therefore \mathrm{g}(n)$ is divisible by 9 when $n=1$.

Assume that for $n=k$,
$\mathrm{g}(k)=5^{2 k}-6 k+8$ is divisible by 9 for $k \in \mathbb{Z}^{+}$.
From(a), $\mathrm{g}(k+1)=25 \mathrm{~g}(k)+144 n-198$

$$
=25 \mathrm{~g}(k)+18(8 n-11)
$$

As both $25 \mathrm{~g}(k)$ and $18(8 n-11)$ are divisible by 9 then the sum of these two terms must also be divisible by 9 . Therefore $\mathrm{g}(n)$ is divisible by 9 when $n=k+1$.

If $\mathrm{g}(n)$ is divisible by 9 when $n=k$, then it has been shown that $\mathrm{g}(n)$ is also divisible by 9 when $n=k+1$. As $\mathrm{g}(n)$ is divisible by 9 when $n=1, \mathrm{~g}(n)$ is also divisible by 9 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 11

Question:

Use the method of mathematical induction to prove that $8^{n}-3^{n}$ is divisible by 5 for all $n \in \mathbb{Z}^{+}$.

Solution:

$\mathrm{f}(n)=8^{n}-3^{n}$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=8^{1}-3^{1}=5$, which is divisible by 5 .
$\therefore \mathrm{f}(n)$ is divisible by 5 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=8^{k}-3^{k}$ is divisible by 5 for $k \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(k+1)=8^{k+1}-3^{k+1}$
$=8^{k} \cdot 8^{1}-3^{k} \cdot 3^{1}$

$$
=8\left(8^{k}\right)-3\left(3^{k}\right)
$$

$\therefore \mathrm{f}(k+1)-3 \mathrm{f}(k)=\left[8\left(8^{k}\right)-3\left(3^{k}\right)\right]-3\left[8^{k}-3^{k}\right]$
$=8\left(8^{k}\right)-3\left(3^{k}\right)-3\left(8^{k}\right)+3\left(3^{k}\right)$
$=5\left(8^{k}\right)$

From (a), $\mathrm{f}(k+1)=\mathrm{f}(k)+5\left(8^{k}\right)$

As both $\mathrm{f}(k)$ and $5\left(8^{k}\right)$ are divisible by 5 then the sum of these two terms must also be divisible by 5 . Therefore $\mathrm{f}(n)$ is divisible by 5 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 5 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 5 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 5 when $n=1, \mathrm{f}(n)$ is also divisible by 5 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 12

Question:

Use the method of mathematical induction to prove that $3^{2 n+2}+8 n-9$ is divisible by 8 for all $n \in \mathbb{Z}^{+}$.

Solution:

$\mathrm{f}(n)=3^{2 n+2}+8 n-9$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=3^{2(1)+2}+8(1)-9$
$=3^{4}+8-9=81-1=80$, which is divisible by 8 .
$\therefore \mathrm{f}(n)$ is divisible by 8 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=3^{2 k+2}+8 k-9$ is divisible by 8 for $k \in \mathbb{Z}^{+}$.

$$
\begin{aligned}
\mathrm{f}(k+1) & =3^{2(k+1)+2}+8(k+1)-9 \\
& =3^{2 k+2+2}+8(k+1)-9 \\
& =3^{2 k+2} \cdot\left(3^{2}\right)+8 k+8-9 \\
& =9\left(3^{2 k+2}\right)+8 k-1 \\
\therefore \mathrm{f}(k+1)-\mathrm{f}(k) & =\left[9\left(3^{2 k+2}\right)+8 k-1\right]-\left[3^{2 k+2}+8 k-9\right] \\
& =9\left(3^{2 k+2}\right)+8 k-1-3^{2 k+2}-8 k+9 \\
& =8\left(3^{2 k+2}\right)+8 \\
& =8\left[3^{2 k+2}+1\right]
\end{aligned}
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+8\left[3^{2 k+2}+1\right]$

As both $\mathrm{f}(k)$ and $8\left[3^{2 k+2}+1\right]$ are divisible by 8 then the sum of these two terms must also be divisible by 8 . Therefore $\mathrm{f}(n)$ is divisible by 8 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 8 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 8 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 8 when $n=1, \mathrm{f}(n)$ is also divisible by 8 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise B, Question 13

Question:

Use the method of mathematical induction to prove that $2^{6 n}+3^{2 n-2}$ is divisible by 5 for all $n \in \mathbb{Z}^{+}$.

Solution:

$\mathrm{f}(n)=2^{6 n}+3^{2 n-2}$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=2^{6(1)}+3^{2(1)-2}=2^{6}+3^{0}=64+1=65$, which is divisible by 5 .
$\therefore \mathrm{f}(n)$ is divisible by 5 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=2^{6 k}+3^{2 k-2}$ is divisible by 5 for $k \in \mathbb{Z}^{+}$.

$$
\begin{aligned}
\therefore \mathrm{f}(k+1) & =2^{6(k+1)}+3^{2(k+1)-2} \\
& =2^{6 k+6}+3^{2 k+2-2} \\
& =2^{6}\left(2^{6 k}\right)+3^{2}\left(3^{2 k-2}\right) \\
& =64\left(2^{6 k}\right)+9\left(3^{2 k-2}\right)
\end{aligned}
$$

$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[64\left(2^{6 k}\right)+9\left(3^{2 k-2}\right)\right]-\left[2^{6 k}+3^{2 k-2}\right]$
$=64\left(2^{6 k}\right)+9\left(3^{2 k-2}\right)-2^{6 k}-3^{2 k-2}$
$=63\left(2^{6 k}\right)+8\left(3^{2 k-2}\right)$
$=63\left(2^{6 k}\right)+63\left(3^{2 k-2}\right)-55\left(3^{2 k-2}\right)$
$=63\left[2^{6 k}+3^{2 k-2}\right]-55\left(3^{2 k-2}\right)$
$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+63\left[2^{6 k}+3^{2 k-2}\right]-55\left(3^{2 k-2}\right)$

$$
=\mathrm{f}(k)+63 \mathrm{f}(k)-55\left(3^{2 k-2}\right)
$$

$$
=64 \mathrm{f}(k)-55\left(3^{2 k-2}\right)
$$

$\therefore \mathrm{f}(k+1)=64 \mathrm{f}(k)-55\left(3^{2 k-2}\right)$

As both $64 \mathrm{f}(k)$ and $-55\left(3^{2 k-2}\right)$ are divisible by 5 then the sum of these two terms must also be divisible by 5 . Therefore $\mathrm{f}(n)$ is divisible by 5 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 5 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 5 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 5 when $n=1, \mathrm{f}(n)$ is also divisible by 5 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction
 Exercise C, Question 1

Question:

Given that $u_{n+1}=5 u_{n}+4, u_{1}=4$, prove by induction that $u_{n}=5^{n}-1$.

Solution:

$n=1 ; u_{1}=5^{1}-1=4$, as given
$n=2 ; u_{2}=5^{2}-1=24$, from the general statement.
and $u_{2}=5 u_{1}+4=5(4)+4=24$, from the recurrence relation.

So u_{n} is true when $n=1$ and also true when $n=2$.

Assume that for $n=k$ that, $u_{k}=5^{k}-1$ is true for $k \in \mathbb{Z}^{+}$.

Then $u_{k+1}=5 u_{k}+4$

$$
\begin{aligned}
& =5\left(5^{k}-1\right)+4 \\
& =5^{k+1}-5+4 \\
& =5^{k+1}-1
\end{aligned}
$$

Therefore, the general statement, $u_{n}=5^{n}-1$ is true when $n=k+1$.

If u_{n} is true when $n=k$, then it has been shown that $u_{n}=5^{n}-1$ is also true when $n=k+1$. As u_{n} is true for $n=1$ and $n=2$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction
 Exercise C, Question 2

Question:

Given that $u_{n+1}=2 u_{n}+5, u_{1}=3$, prove by induction that $u_{n}=2^{n+2}-5$.

Solution:

$n=1 ; u_{1}=2^{1+2}-5=8-5=3$, as given.
$n=2 ; u_{2}=2^{4}-5=16-5=11$, from the general statement.
and $u_{2}=2 u_{1}+5=2(3)+5=11$, from the recurrence relation.

So u_{n} is true when $n=1$ and also true when $n=2$.
Assume that for $n=k$ that, $u_{k}=2^{k+2}-5$ is true for $k \in \mathbb{Z}^{+}$.

Then $u_{k+1}=2 u_{k}+5$

$$
\begin{aligned}
& =2\left(2^{k+2}-5\right)+5 \\
& =2^{k+3}-10+5 \\
& =2^{k+1+2}-5
\end{aligned}
$$

Therefore, the general statement, $u_{n}=2^{n+2}-5$ is true when $n=k+1$.

If u_{n} is true when $n=k$, then it has been shown that $u_{n}=2^{n+2}-5$ is also true when $n=k+1$. As u_{n} is true for $n=1$ and $n=2$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise C, Question 3

Question:

Given that $u_{n+1}=5 u_{n}-8, u_{1}=3$, prove by induction that $u_{n}=5^{n-1}+2$.

Solution:

$n=1 ; u_{1}=5^{1-1}+2=1+2=3$, as given.
$n=2 ; u_{2}=5^{2-1}+2=5+2=7$, from the general statement.
and $u_{2}=5 u_{1}-8=5(3)-8=7$, from the recurrence relation.

So u_{n} is true when $n=1$ and also true when $n=2$.
Assume that for $n=k$ that, $u_{k}=5^{k-1}+2$ is true for $k \in \mathbb{Z}^{+}$.

Then $u_{k+1}=5 u_{k}-8$

$$
\begin{aligned}
& =5\left(5^{k-1}+2\right)-8 \\
& =5^{k-1+1}+10-8 \\
& =5^{k}+2 \\
& =5^{k+1-1}+2
\end{aligned}
$$

Therefore, the general statement, $u_{n}=5^{n-1}+2$ is true when $n=k+1$.

If u_{n} is true when $n=k$, then it has been shown that $u_{n}=5^{n-1}+2$ is also true when $n=k+1$. As u_{n} is true for $n=1$ and $n=2$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise C, Question 4

Question:

Given that $u_{n+1}=3 u_{n}+1, u_{1}=1$, prove by induction that $u_{n}=\frac{3^{n}-1}{2}$.

Solution:

$n=1 ; u_{1}=\frac{3^{1}-1}{2}=\frac{2}{2}=1$, as given.
$n=2 ; u_{2}=\frac{3^{2}-1}{2}=\frac{8}{2}=4$, from the general statement.
and $u_{2}=3 u_{1}+1=3(1)+1=4$, from the recurrence relation.

So u_{n} is true when $n=1$ and also true when $n=2$.

Assume that for $n=k$ that, $u_{k}=\frac{3^{k}-1}{2}$ is true for $k \in \mathbb{Z}^{+}$.

Then $u_{k+1}=3 u_{k}+1$

$$
\begin{aligned}
& =3\left(\frac{3^{k}-1}{2}\right)+1 \\
& =\left(\frac{3\left(3^{k}\right)-3}{2}\right)+\frac{2}{2} \\
& =\frac{3^{k+1}-3+2}{2} \\
& =\frac{3^{k+1}-1}{2}
\end{aligned}
$$

Therefore, the general statement, $u_{n}=\frac{3^{n}-1}{2}$ is true when $n=k+1$.

If u_{n} is true when $n=k$, then it has been shown that $u_{n}=\frac{3^{n}-1}{2}$ is also true when $n=k+1$. As u_{n} is true for $n=1$ and $n=2$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise C, Question 5

Question:

Given that $u_{n+2}=5 u_{n+1}-6 u_{n}, u_{1}=1, u_{2}=5$ prove by induction that $u_{n}=3^{n}-2^{n}$.

Solution:

$n=1 ; u_{1}=3^{1}-2^{1}=3-2=1$, as given.
$n=2 ; u_{2}=3^{2}-2^{2}=9-4=5$, as given.
$n=3 ; u_{3}=3^{3}-2^{3}=27-8=19$, from the general statement.
and $u_{3}=5 u_{2}-6 u_{1}=5(5)-6(1)$
$=25-6=19$, from the recurrence relation.

So u_{n} is true when $n=1, n=2$ and also true when $n=3$.

Assume that for $n=k$ and $n=k+1$,
both $u_{k}=3^{k}-2^{k}$ and $u_{k+1}=3^{k+1}-2^{k+1}$ are true for $k \in \mathbb{Z}^{+}$.

Then $u_{k+2}=5 u_{k+1}-6 u_{k}$

$$
\begin{aligned}
& =5\left(3^{k+1}-2^{k+1}\right)-6\left(3^{k}-2^{k}\right) \\
& =5\left(3^{k+1}\right)-5\left(2^{k+1}\right)-6\left(3^{k}\right)+6\left(2^{k}\right) \\
& =5\left(3^{k+1}\right)-5\left(2^{k+1}\right)-2\left(3^{1}\right)\left(3^{k}\right)+3\left(2^{1}\right)\left(2^{k}\right) \\
& =5\left(3^{k+1}\right)-5\left(2^{k+1}\right)-2\left(3^{k+1}\right)+3\left(2^{k+1}\right) \\
& =3\left(3^{k+1}\right)-2\left(2^{k+1}\right) \\
& =\left(3^{1}\right)\left(3^{k+1}\right)-\left(2^{1}\right)\left(2^{k+1}\right) \\
& =3^{k+2}-2^{k+2}
\end{aligned}
$$

Therefore, the general statement, $u_{n}=3^{n}-2^{n}$ is true when $n=k+2$.

If u_{n} is true when $n=k$ and $n=k+1$ then it has been shown that $u_{n}=3^{n}-2^{n}$ is also true when $n=k+2$. As u_{n} is true for $n=1, n=2$ and $n=3$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise C, Question 6

Question:

Given that $u_{n+2}=6 u_{n+1}-9 u_{n}, u_{1}=-1, u_{2}=0$, prove by induction that $u_{n}=(n-2) 3^{n-1}$.

Solution:

$n=1 ; u_{1}=(1-2) 3^{1-1}=(-1)(1)=-1$, as given.
$n=2 ; u_{2}=(2-2) 3^{2-1}=(0)(3)=0$, as given.
$n=3 ; u_{3}=(3-2) 3^{3-1}=(1)(9)=9$, from the general statement.
and $u_{3}=6 u_{2}-9 u_{1}=6(0)-9(-1)$
$=0--9=9$, from the recurrence relation.

So u_{n} is true when $n=1, n=2$ and also true when $n=3$.

Assume that for $n=k$ and $n=k+1$,
both $u_{k}=(k-2) 3^{k-1}$
and $u_{k+1}=(k+1-2) 3^{k+1-1}=(k-1) 3^{k}$ are true for $k \in \mathbb{Z}^{+}$.

$$
\text { Then } \begin{aligned}
u_{k+2} & =6 u_{k+1}-9 u_{k} \\
& =6\left((k-1) 3^{k}\right)-9\left((k-2) 3^{k-1}\right) \\
& =6(k-1)\left(3^{k}\right)-3(k-2) \cdot 3\left(3^{k-1}\right) \\
& =6(k-1)\left(3^{k}\right)-3(k-2)\left(3^{k-1+1}\right) \\
& =6(k-1)\left(3^{k}\right)-3(k-2)\left(3^{k}\right) \\
& =\left(3^{k}\right)[6(k-1)-3(k-2)] \\
& =\left(3^{k}\right)[6 k-6-3 k+6] \\
& =3 k\left(3^{k}\right) \\
& =k\left(3^{k+1}\right) \\
& =(k+2-2)\left(3^{k+2-1}\right)
\end{aligned}
$$

Therefore, the general statement, $u_{n}=(n-2) 3^{n-1}$ is true when $n=k+2$.
If u_{n} is true when $n=k$ and $n=k+1$ then it has been shown that $u_{n}=(n-2) 3^{n-1}$ is also true when $n=k+2$. As u_{n} is true for $n=1, n=2$ and $n=3$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise C, Question 7

Question:

Given that $u_{n+2}=7 u_{n+1}-10 u_{n}, u_{1}=1, u_{2}=8$, prove by induction that $u_{n}=2\left(5^{n-1}\right)-2^{n-1}$.

Solution:

$n=1 ; u_{1}=2\left(5^{0}\right)-\left(2^{0}\right)=2-1=1$, as given.
$n=2 ; u_{2}=2\left(5^{1}\right)-\left(2^{1}\right)=10-2=8$, as given.
$n=3 ; u_{3}=2\left(5^{2}\right)-\left(2^{2}\right)=50-4=46$, from the general statement.
and $u_{3}=7 u_{2}-10 u_{1}=7(8)-10(1)$
$=56-10=46$, from the recurrence relation.

So u_{n} is true when $n=1, n=2$ and also true when $n=3$.

Assume that for $n=k$ and $n=k+1$,
both $u_{k}=2\left(5^{k-1}\right)-2^{k-1}$
and $u_{k+1}=2\left(5^{k+1-1}\right)-2^{k+1-1}=2\left(5^{k}\right)-2^{k}$ are true for $k \in \mathbb{Z}^{+}$.

$$
\text { Then } \begin{aligned}
u_{k+2} & =7 u_{k+1}-10 u_{k} \\
& =7\left(2\left(5^{k}\right)-2^{k}\right)-10\left(2\left(5^{k-1}\right)-2^{k-1}\right) \\
& =14\left(5^{k}\right)-7\left(2^{k}\right)-20\left(5^{k-1}\right)+10\left(2^{k-1}\right) \\
& =14\left(5^{k}\right)-7\left(2^{k}\right)-4\left(5^{1}\right)\left(5^{k-1}\right)+5\left(2^{1}\right)\left(2^{k-1}\right) \\
& =14\left(5^{k}\right)-7\left(2^{k}\right)-4\left(5^{k-1+1}\right)+5\left(2^{k-1+1}\right) \\
& =14\left(5^{k}\right)-7\left(2^{k}\right)-4\left(5^{k}\right)+5\left(2^{k}\right) \\
& =2\left(5^{1}\right)\left(5^{k}\right)-\left(2^{1}\right)\left(2^{k}\right) \\
& =2\left(5^{k+1}\right)-\left(2^{k+1}\right) \\
& =2\left(5^{k+2-1}\right)-\left(2^{k+2-1}\right)
\end{aligned}
$$

Therefore, the general statement, $u_{n}=2\left(5^{n-1}\right)-2^{n-1}$ is true when $n=k+2$.
If u_{n} is true when $n=k$ and $n=k+1$ then it has been shown that $u_{n}=2\left(5^{n-1}\right)-2^{n-1}$ is also true when $n=k+2$. As u_{n} is true for $n=1, n=2$ and $n=3$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise C, Question 8

Question:

Given that $u_{n+2}=6 u_{n+1}-9 u_{n}, u_{1}=3, u_{2}=36$, prove by induction that $u_{n}=(3 n-2) 3^{n}$.

Solution:

$n=1 ; u_{1}=(3(1)-2)\left(3^{1}\right)=(1)(3)=3$, as given.
$n=2 ; u_{2}=(3(2)-2)\left(3^{2}\right)=(4)(9)=36$, as given.
$n=3 ; u_{3}=(3(3)-2)\left(3^{3}\right)=(7)(27)=189$, from the general statement.
and $u_{3}=6 u_{2}-9 u_{1}=6(36)-9(3)$
$=216-27=189$, from the recurrence relation.

So u_{n} is true when $n=1, n=2$ and also true when $n=3$.

Assume that for $n=k$ and $n=k+1$,
both $u_{k}=(3 k-2)\left(3^{k}\right)$
and $u_{k+1}=(3(k+1)-2)\left(3^{k+1}\right)=(3 k+1)\left(3^{k+1}\right)$ are true for $k \in \mathbb{Z}^{+}$.
Then $u_{k+2}=6 u_{k+1}-9 u_{k}$

$$
\begin{aligned}
& =6\left((3 k+1)\left(3^{k+1}\right)\right)-9\left((3 k-2)\left(3^{k}\right)\right) \\
& =6(3 k+1) 3^{1}\left(3^{k}\right)-9(3 k-2)\left(3^{k}\right) \\
& =18(3 k+1)\left(3^{k}\right)-9(3 k-2)\left(3^{k}\right) \\
& =9\left(3^{k}\right)[2(3 k+1)-(3 k-2)] \\
& =9\left(3^{k}\right)[6 k+2-3 k+2] \\
& =9\left(3^{k}\right)[3 k+4] \\
& =3^{2}\left(3^{k}\right)[3 k+4] \\
& =(3 k+4)\left(3^{k+2}\right) \\
& =(3(k+2)-2)\left(3^{k+2}\right)
\end{aligned}
$$

Therefore, the general statement, $u_{n}=(3 n-2) 3^{n}$ is true when $n=k+2$.

If u_{n} is true when $n=k$ and $n=k+1$ then it has been shown that $u_{n}=(3 n-2) 3^{n}$ is also true when $n=k+2$. As u_{n} is true for $n=1, n=2$ and $n=3$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise D, Question 1

Question:

Prove by the method of mathematical induction the following statement for $n \in \mathbb{Z}^{+}$.
$\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)^{n}=\left(\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right)$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)^{1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
\text { RHS } & =\left(\begin{array}{cc}
1 & 2(1) \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

As LHS $=$ RHS, the matrix equation is true for $n=1$.

Assume that the matrix equation is true for $n=k$.
ie. $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)^{k}=\left(\begin{array}{cc}1 & 2 k \\ 0 & 1\end{array}\right)$

With $n=k+1$ the matrix equation becomes

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)^{k+1} & =\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)^{k}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 2 k \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+0 & 2+2 k \\
0+0 & 0+1
\end{array}\right) . \\
& =\left(\begin{array}{cc}
1 & 2(k+1) \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Therefore the matrix equation is true when $n=k+1$.

If the matrix equation is true for $n=k$, then it is shown to be true for $n=k+1$. As the matrix equation is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise D, Question 2

Question:

Prove by the method of mathematical induction the following statement for $n \in \mathbb{Z}^{+}$.
$\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)^{n}=\left(\begin{array}{cc}2 n+1 & -4 n \\ n & -2 n+1\end{array}\right)$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\left(\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right)^{1}=\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right) \\
\text { RHS } & =\left(\begin{array}{cc}
2(1)+1 & -4(1) \\
1 & -2(1)+1
\end{array}\right)=\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

As LHS $=$ RHS, the matrix equation is true for $n=1$.

Assume that the matrix equation is true for $n=k$.
ie. $\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)^{k}=\left(\begin{array}{cc}2 k+1 & -4 k \\ k & -2 k+1\end{array}\right)$.

With $n=k+1$ the matrix equation becomes

$$
\begin{aligned}
\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right)^{k+1} & =\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right)^{k}\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 k+1 & -4 k \\
k & -2 k+1
\end{array}\right)\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
6 k+3-4 k & -8 k-4+4 k \\
3 k-2 k+1 & -4 k+2 k-1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 k+3 & -4 k-4 \\
k+1 & -2 k-1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2(k+1)+1 & -4(k+1) \\
(k+1) & -2(k+1)+1
\end{array}\right)
\end{aligned}
$$

Therefore the matrix equation is true when $n=k+1$.

If the matrix equation is true for $n=k$, then it is shown to be true for $n=k+1$. As the matrix equation is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise D, Question 3

Question:

Prove by the method of mathematical induction the following statement for $n \in \mathbb{Z}^{+}$.
$\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)^{n}=\left(\begin{array}{cc}2^{n} & 0 \\ 2^{n}-1 & 1\end{array}\right)$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)^{1}=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) \\
\text { RHS } & =\left(\begin{array}{cc}
2^{1} & 0 \\
2^{1}-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

As LHS $=$ RHS, the matrix equation is true for $n=1$.

Assume that the matrix equation is true for $n=k$.
ie. $\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)^{k}=\left(\begin{array}{cc}2^{k} & 0 \\ 2^{k}-1 & 1\end{array}\right)$

With $n=k+1$ the matrix equation becomes

$$
\begin{aligned}
\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)^{k+1} & =\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)^{k}\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{k} & 0 \\
2^{k}-1 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2\left(2^{k}\right)+0 & 0+0 \\
2\left(2^{k}\right)-2+1 & 0+1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{1}\left(2^{k}\right) & 0 \\
2^{1}\left(2^{k}\right)-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{k+1} & 0 \\
2^{k+1}-1 & 1
\end{array}\right)
\end{aligned}
$$

Therefore the matrix equation is true when $n=k+1$.

If the matrix equation is true for $n=k$, then it is shown to be true for $n=k+1$. As the matrix equation is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise D, Question 4

Question:

Prove by the method of mathematical induction the following statement for $n \in \mathbb{Z}^{+}$.
$\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)^{n}=\left(\begin{array}{cc}4 n+1 & -8 n \\ 2 n & 1-4 n\end{array}\right)$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\left(\begin{array}{ll}
5 & -8 \\
2 & -3
\end{array}\right)^{1}=\left(\begin{array}{ll}
5 & -8 \\
2 & -3
\end{array}\right) \\
\text { RHS } & =\left(\begin{array}{cc}
4(1)+1 & -8(1) \\
2(1) & 1-4(1)
\end{array}\right)=\left(\begin{array}{ll}
5 & -8 \\
2 & -3
\end{array}\right)
\end{aligned}
$$

As LHS $=$ RHS, the matrix equation is true for $n=1$.

Assume that the matrix equation is true for $n=k$.
ie. $\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)^{k}=\left(\begin{array}{cc}4 k+1 & -8 k \\ 2 k & 1-4 k\end{array}\right)$.

With $n=k+1$ the matrix equation becomes

$$
\begin{aligned}
\left(\begin{array}{ll}
5 & -8 \\
2 & -3
\end{array}\right)^{k+1} & =\left(\begin{array}{cc}
5 & -8 \\
2 & -3
\end{array}\right)^{k}\left(\begin{array}{ll}
5 & -8 \\
2 & -3
\end{array}\right) \\
& =\left(\begin{array}{cc}
4 k+1 & -8 k \\
2 k & 1-4 k
\end{array}\right)\left(\begin{array}{ll}
5 & -8 \\
2 & -3
\end{array}\right) \\
& =\left(\begin{array}{cc}
20 k+5-16 k & -32 k-8+24 k \\
10 k+2-8 k & -16 k-3+12 k
\end{array}\right) \\
& =\left(\begin{array}{cc}
4 k+5 & -8 k-8 \\
2 k+2 & -4 k-3
\end{array}\right) \\
& =\left(\begin{array}{cc}
4(k+1)+1 & -8(k+1) \\
2(k+1) & 1-4(k+1)
\end{array}\right)
\end{aligned}
$$

Therefore the matrix equation is true when $n=k+1$.

If the matrix equation is true for $n=k$, then it is shown to be true for $n=k+1$. As the matrix equation is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise D, Question 5

Question:

Prove by the method of mathematical induction the following statement for $n \in \mathbb{Z}^{+}$.
$\left(\begin{array}{ll}2 & 5 \\ 0 & 1\end{array}\right)^{n}=\left(\begin{array}{cc}2^{n} & 5\left(2^{n}-1\right) \\ 0 & 1\end{array}\right)$

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right)^{1}=\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right) \\
\text { RHS } & =\left(\begin{array}{cc}
2^{1} & 5\left(2^{1}-1\right) \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

As LHS $=$ RHS, the matrix equation is true for $n=1$.

Assume that the matrix equation is true for $n=k$.
ie. $\left(\begin{array}{ll}2 & 5 \\ 0 & 1\end{array}\right)^{k}=\left(\begin{array}{cc}2^{k} & 5\left(2^{k}-1\right) \\ 0 & 1\end{array}\right)$

With $n=k+1$ the matrix equation becomes

$$
\begin{aligned}
\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right)^{k+1} & =\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right)^{k}\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{k} & 5\left(2^{k}-1\right) \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2\left(2^{k}\right)+0 & 5\left(2^{k}\right)+5\left(2^{k}-1\right) \\
0+0 & 0+1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{1}\left(2^{k}\right) & 5\left(2^{k}\right)+5\left(2^{k}\right)-5 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{k+1} & 5\left(2^{1}\right)\left(2^{k}\right)-5 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{k+1} & 5\left(2^{k+1}\right)-5 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{k+1} & 5\left(2^{k+1}-1\right) \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Therefore the matrix equation is true when $n=k+1$.

If the matrix equation is true for $n=k$, then it is shown to be true for $n=k+1$. As the matrix equation is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 1

Question:

Prove by induction that $9^{n}-1$ is divisible by 8 for $n \in \mathbb{Z}^{+}$.

Solution:

Let $\mathrm{f}(n)=9^{n}-1$, where $n \in \mathbb{Z}^{+}$.
$\therefore f(1)=9^{1}-1=8$, which is divisible by 8 .
$\therefore \mathrm{f}(n)$ is divisible by 8 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=9^{k}-1$ is divisible by 8 for $k \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(k+1)=9^{k+1}-1$
$=9^{k} .9^{1}-1$

$$
=9\left(9^{k}\right)-1
$$

$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[9\left(9^{k}\right)-1\right]-\left[9^{k}-1\right]$

$$
\begin{aligned}
& =9\left(9^{k}\right)-1-9^{k}+1 \\
& =8\left(9^{k}\right)
\end{aligned}
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+8\left(9^{k}\right)$

As both $\mathrm{f}(k)$ and $8\left(9^{k}\right)$ are divisible by 8 then the sum of these two terms must also be divisible by 8 . Therefore $\mathrm{f}(n)$ is divisible by 8 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 8 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 8 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 8 when $n=1, \mathrm{f}(n)$ is also divisible by 8 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 2

Question:

The matrix \mathbf{B} is given by $\mathbf{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$.
\mathbf{a} Find \mathbf{B}^{2} and \mathbf{B}^{3}.
b Hence write down a general statement for \boldsymbol{B}^{n}, for $n \in \mathbb{Z}^{+}$.
c Prove, by induction that your answer to part \mathbf{b} is correct

Solution:

a
$\mathbf{B}^{2}=\mathbf{B B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)=\left(\begin{array}{ll}1+0 & 0+0 \\ 0+0 & 0+9\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right)$
$\mathbf{B}^{3}=\mathbf{B}^{2} \mathbf{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)=\left(\begin{array}{cc}1+0 & 0+0 \\ 0+0 & 0+27\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 27\end{array}\right)$
\mathbf{b} As $\mathbf{B}^{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{2}\end{array}\right)$ and $\mathbf{B}^{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{3}\end{array}\right)$, we suggest that $\mathbf{B}^{n}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{n}\end{array}\right)$.
c
$n=1 ;$ LHS $=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)^{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$

$$
\text { RHS }=\left(\begin{array}{ll}
1 & 0 \\
0 & 3^{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)
$$

As LHS $=$ RHS, the matrix equation is true for $n=1$.

Assume that the matrix equation is true for $n=k$.
ie. $\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)^{k}=\left(\begin{array}{cc}1 & 0 \\ 0 & 3^{k}\end{array}\right)$

With $n=k+1$ the matrix equation becomes

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)^{k+1} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)^{k}\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 3^{k}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+0 & 0+0 \\
0+0 & 0+3\left(3^{k}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 3^{k+1}
\end{array}\right)
\end{aligned}
$$

Therefore the matrix equation is true when $n=k+1$.

If the matrix equation is true for $n=k$, then it is shown to be true for $n=k+1$. As the matrix equation is true for $n=1$, it is
now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 3

Question:

Prove by induction that for $n \in \mathbb{Z}^{+}$, that $\sum_{r=1}^{n}(3 r+4)=\frac{1}{2} n(3 n+11)$.

Solution:

$$
\begin{aligned}
n=1 ; \text { LHS } & =\sum_{r=1}^{1}(3 r+4)=7 \\
\text { RHS } & =\frac{1}{2}(1)(14)=\frac{1}{2}(14)=7
\end{aligned}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k}(3 r+4)=\frac{1}{2} k(3 k+11)$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1}(3 r+4) & =7+10+13+\geq+(3 k+4)+(3(k+1)+4) \\
& =\frac{1}{2} k(3 k+11)+(3(k+1)+4) \\
& =\frac{1}{2} k(3 k+11)+(3 k+7) \\
& =\frac{1}{2}[k(3 k+11)+2(3 k+7)] \\
& =\frac{1}{2}\left[3 k^{2}+11 k+6 k+14\right] \\
& =\frac{1}{2}\left[3 k^{2}+17 k+14\right] \\
& =\frac{1}{2}(k+1)(3 k+14) \\
& =\frac{1}{2}(k+1)[3(k+1)+11]
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.

If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 4

Question:

A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \geq$ is defined by $u_{n+1}=5 u_{n}-3\left(2^{n}\right), u_{1}=7$.
a Find the first four terms of the sequence.
b Prove, by induction for $n \in \mathbb{Z}^{+}$, that $u_{n}=5^{n}+2^{n}$.

Solution:

a $u_{n+1}=5 u_{n}-3\left(2^{n}\right)$

Given, $u_{1}=7$.
$u_{2}=5 u_{1}-3\left(2^{1}\right)=5(7)-6=35-6=29$
$u_{3}=5 u_{2}-3\left(2^{2}\right)=5(29)-3(4)=145-12=133$
$u_{4}=5 u_{3}-3\left(2^{3}\right)=5(133)-3(8)=665-24=641$
The first four terms of the sequence are $7,29,133,641$.
b
$n=1 ; u_{1}=5^{1}+2^{1}=5+2=7$, as given.
$n=2 ; u_{2}=5^{2}+2^{2}=25+4=29$, from the general statement.

From the recurrence relation in part (a), $u_{2}=29$.

So u_{n} is true when $n=1$ and also true when $n=2$.

Assume that for $n=k, u_{k}=5^{k}+2^{k}$ is true for $k \in \mathbb{Z}^{+}$.

$$
\text { Then } \begin{aligned}
u_{k+1} & =5 u_{k}-3\left(2^{k}\right) \\
& =5\left(5^{k}+2^{k}\right)-3\left(2^{k}\right) \\
& =5\left(5^{k}\right)+5\left(2^{k}\right)-3\left(2^{k}\right) \\
& =5^{1}\left(5^{k}\right)+2^{1}\left(2^{k}\right) \\
& =5^{k+1}+2^{k+1}
\end{aligned}
$$

Therefore, the general statement, $u_{n}=5^{n}+2^{n}$ is true when $n=k+1$.

If u_{n} is true when $n=k$, then it has been shown that $u_{n}=5^{n}+2^{n}$ is also true when $n=k+1$. As u_{n} is true for $n=1$ and $n=2$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 5

Question:

The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{cc}9 & 16 \\ -4 & -7\end{array}\right)$.
a Prove by induction that $\mathbf{A}^{n}=\left(\begin{array}{cc}8 n+1 & 16 n \\ -4 n & 1-8 n\end{array}\right)$ for $n \in \mathbb{Z}^{+}$.

The matrix \mathbf{B} is given by $\mathbf{B}=\left(\mathbf{A}^{n}\right)^{-1}$
\mathbf{b} Hence find \mathbf{B} in terms of n.

Solution:

a

$$
\begin{aligned}
n=1 ; \text { LHS } & =\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right)^{1}=\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right) \\
\text { RHS } & =\left(\begin{array}{cc}
8(1)+1 & 16(1) \\
-4(1) & 1-8(1)
\end{array}\right)=\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right)
\end{aligned}
$$

As LHS $=$ RHS, the matrix equation is true for $n=1$.

Assume that the matrix equation is true for $n=k$.
ie. $\quad\left(\begin{array}{cc}9 & 16 \\ -4 & -7\end{array}\right)^{k}=\left(\begin{array}{cc}8 k+1 & 16 k \\ -4 k & 1-8 k\end{array}\right)$.

With $n=k+1$ the matrix equation becomes

$$
\begin{aligned}
\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right)^{k+1} & =\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right)^{k}\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right) \\
& =\left(\begin{array}{cc}
8 k+1 & 16 k \\
-4 k & 1-8 k
\end{array}\right)\left(\begin{array}{cc}
9 & 16 \\
-4 & -7
\end{array}\right) \\
& =\left(\begin{array}{cc}
72 k+9-64 k & 128 k+16-112 k \\
-36 k-4+32 k & -64 k-7+56 k
\end{array}\right) \\
& =\left(\begin{array}{cc}
8 k+9 & 16 k+16 \\
-4 k-4 & -8 k-7
\end{array}\right) \\
& =\left(\begin{array}{cc}
8(k+1)+1 & 16(k+1) \\
-4(k+1) & 1-8(k+1)
\end{array}\right)
\end{aligned}
$$

Therefore the matrix equation is true when $n=k+1$.

If the matrix equation is true for $n=k$, then it is shown to be true for $n=k+1$. As the matrix equation is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
b

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{A}^{n}\right) & =(8 n+1)(1-8 n)--64 n^{2} \\
& =8 n-64 n^{2}+1-8 n+64 n^{2} \\
& =1
\end{aligned}
$$

$\mathbf{B}=\left(\mathbf{A}^{n}\right)^{-1}=\frac{1}{1}\left(\begin{array}{cc}1-8 n & -16 n \\ 4 n & 8 n+1\end{array}\right)$

So $\mathbf{B}=\left(\begin{array}{cc}1-8 n & -16 n \\ 4 n & 8 n+1\end{array}\right)$
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 6

Question:

The function f is defined by $\mathrm{f}(n)=5^{2 n-1}+1$, where $n \in \mathbb{Z}^{+}$.
a Show that $\mathrm{f}(n+1)-\mathrm{f}(n)=\mu\left(5^{2 n-1}\right)$, where μ is an integer to be determined.
b Hence prove by induction that $\mathrm{f}(n)$ is divisible by 6 .

Solution:

a

$$
\begin{aligned}
\mathrm{f}(n+1) & =5^{2(n+1)-1}+1 \\
& =5^{2 n+2-1}+1 \\
& =5^{2 n-1} \cdot 5^{2}+1 \\
& =25\left(5^{2 n-1}\right)+1
\end{aligned}
$$

$\therefore \mathrm{f}(n+1)-\mathrm{f}(n)=\left[25\left(5^{2 n-1}\right)+1\right]-\left[5^{2 n-1}+1\right]$

$$
=25\left(5^{2 n-1}\right)+1-\left(5^{2 n-1}\right)-1
$$

$$
=24\left(5^{2 n-1}\right)
$$

Therefore, $\mu=24$.
b $\mathrm{f}(n)=5^{2 n-1}+1$, where $n \in \mathbb{Z}^{+}$.
$\therefore f(1)=5^{2(1)-1}+1=5^{1}+1=6$, which is divisible by 6 .
$\therefore \mathrm{f}(n)$ is divisible by 6 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=5^{2 k-1}+1$ is divisible by 6 for $k \in \mathbb{Z}^{+}$.
$\operatorname{Using}(\mathrm{a}), \mathrm{f}(k+1)-\mathrm{f}(k)=24\left(5^{2 k-1}\right)$
$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+24\left(5^{2 k-1}\right)$

As both $\mathrm{f}(k)$ and $24\left(5^{2 k-1}\right)$ are divisible by 6 then the sum of these two terms must also be divisible by 6 . Therefore $\mathrm{f}(n)$ is divisible by 6 when $n=k+1$.

If $\mathrm{f}(n)$ is divisible by 6 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 6 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 6 when $n=1, \mathrm{f}(n)$ is also divisible by 6 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 7

Question:

Use the method of mathematical induction to prove that $7^{n}+4^{n}+1$ is divisible by 6 for all $n \in \mathbb{Z}^{+}$.

Solution:

Let $\mathrm{f}(n)=7^{n}+4^{n}+1$, where $n \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(1)=7^{1}+4^{1}+1=7+4+1=12$, which is divisible by 6 .
$\therefore \mathrm{f}(n)$ is divisible by 6 when $n=1$.

Assume that for $n=k$,
$\mathrm{f}(k)=7^{k}+4^{k}+1$ is divisible by 6 for $k \in \mathbb{Z}^{+}$.
$\therefore \mathrm{f}(k+1)=7^{k+1}+4^{k+1}+1$
$=7^{k} \cdot 7^{1}+4^{k} \cdot 4^{1}+1$

$$
=7\left(7^{k}\right)+4\left(4^{k}\right)+1
$$

$\therefore \mathrm{f}(k+1)-\mathrm{f}(k)=\left[7\left(7^{k}\right)+4\left(4^{k}\right)+1\right]-\left[7^{k}+4^{k}+1\right]$

$$
=7\left(7^{k}\right)+4\left(4^{k}\right)+1-7^{k}-4^{k}-1
$$

$$
=6\left(7^{k}\right)+3\left(4^{k}\right)
$$

$$
=6\left(7^{k}\right)+3\left(4^{k-1}\right) \cdot 4^{1}
$$

$$
=6\left(7^{k}\right)+12\left(4^{k-1}\right)
$$

$$
=6\left[7^{k}+2(4)^{k-1}\right]
$$

$\therefore \mathrm{f}(k+1)=\mathrm{f}(k)+6\left[7^{k}+2(4)^{k-1}\right]$

As both $\mathrm{f}(k)$ and $6\left[7^{k}+2(4)^{k-1}\right]$ are divisible by 6 then the sum of these two terms must also be divisible by 6 .
Therefore $\mathrm{f}(n)$ is divisible by 6 when $n=k+1$.
If $\mathrm{f}(n)$ is divisible by 6 when $n=k$, then it has been shown that $\mathrm{f}(n)$ is also divisible by 6 when $n=k+1$. As $\mathrm{f}(n)$ is divisible by 6 when $n=1, \mathrm{f}(n)$ is also divisible by 6 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 8

Question:

A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \geq$ is defined by $u_{n+1}=\frac{3 u_{n}-1}{4}, u_{1}=2$.
a Find the first five terms of the sequence.
b Prove, by induction for $n \in \mathbb{Z}^{+}$, that $u_{n}=4\left(\frac{3}{4}\right)^{n}-1$.

Solution:

$\mathbf{a} u_{n+1}=\frac{3 u_{n}-1}{4}$.

Given, $u_{1}=2$
$u_{2}=\frac{3 u_{1}-1}{4}=\frac{3(2)-1}{4}=\frac{5}{4}$
$u_{3}=\frac{3 u_{2}-1}{4}=\frac{3\left(\frac{5}{4}\right)-1}{4}=\frac{\frac{11}{4}}{4}=\frac{11}{16}$
$u_{4}=\frac{3 u_{3}-1}{4}=\frac{3\left(\frac{11}{16}\right)-1}{4}=\frac{\frac{17}{16}}{4}=\frac{17}{64}$
$u_{5}=\frac{3 u_{4}-1}{4}=\frac{3\left(\frac{17}{64}\right)-1}{4}=\frac{-\frac{13}{64}}{4}=-\frac{13}{256}$

The first five terms of the sequence are $2, \frac{5}{4}, \frac{11}{16}, \frac{17}{64},-\frac{13}{256}$.
b
$n=1 ; u_{1}=4\left(\frac{3}{4}\right)^{1}-1=3-1=2$, as given.
$n=2 ; u_{2}=4\left(\frac{3}{4}\right)^{2}-1=\frac{9}{4}-1=\frac{5}{4}$, from the general statement.

From the recurrence relation in part (a), $u_{2}=\frac{5}{4}$.

So u_{n} is true when $n=1$ and also true when $n=2$.

Assume that for $n=k, u_{k}=4\left(\frac{3}{4}\right)^{k}-1$ is true for $k \in \mathbb{Z}^{+}$.

Then $u_{k+1}=\frac{3 u_{k}-1}{4}$

$$
\begin{aligned}
& =\frac{3\left[4\left(\frac{3}{4}\right)^{k}-1\right]-1}{4} \\
& =\frac{3}{4}\left[4\left(\frac{3}{4}\right)^{k}-1\right]-\frac{1}{4} \\
& =4\left(\frac{3}{4}\right)^{1}\left(\frac{3}{4}\right)^{k}-\frac{3}{4}-\frac{1}{4} \\
& =4\left(\frac{3}{4}\right)^{k+1}-1
\end{aligned}
$$

Therefore, the general statement, $u_{n}=4\left(\frac{3}{4}\right)^{n}-1$ is true when $n=k+1$.

If u_{n} is true when $n=k$, then it has been shown that $u_{n}=4\left(\frac{3}{4}\right)^{n}-1$ is also true when $n=k+1$. As u_{n} is true for $n=1$ and $n=2$, then u_{n} is true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 9

Question:

A sequence $u_{1}, u_{2}, u_{3}, u_{4}, \geq$ is defined by $u_{n}=3^{2 n}+7^{2 n-1}$.
a Show that $u_{n+1}-9 u_{n}=\lambda\left(7^{2 k-1}\right)$, where λ is an integer to be determined.
b Hence prove by induction that u_{n} is divisible by 8 for all positive integers n.

Solution:

a

$$
\begin{aligned}
u_{n+1} & =3^{2(n+1)}+7^{2(n+1)-1} \\
& =3^{2 n}\left(3^{2}\right)+7^{2 n+2-1} \\
& =3^{2 n}\left(3^{2}\right)+7^{2 n-1}\left(7^{2}\right) \\
& =9\left(3^{2 n}\right)+49\left(7^{2 n-1}\right)
\end{aligned}
$$

$\therefore u_{n+1}-9 u_{n}=\left[9\left(3^{2 n}\right)+49\left(7^{2 n-1}\right)\right]-9\left[3^{2 n}+7^{2 n-1}\right]$

$$
=9\left(3^{2 n}\right)+49\left(7^{2 n-1}\right)-9\left(3^{2 n}\right)-9\left(7^{2 n-1}\right)
$$

$$
=40\left(7^{2 n-1}\right)
$$

Therefore, $\lambda=40$.
b $u_{n}=3^{2 n}+7^{2 n-1}$, where $n \in \mathbb{Z}^{+}$.
$\therefore u_{1}=3^{2(1)}-7^{2(1)-1}=3^{2}+7^{1}=16$, which is divisible by 8 .
$\therefore u_{n}$ is divisible by 8 when $n=1$.
Assume that for $n=k$,
$u_{k}=3^{2 k}+7^{2 k-1}$ is divisible by 8 for $k \in \mathbb{Z}^{+}$.

Using (a), $u_{k+1}-9 u_{k}=40\left(7^{2 k-1}\right)$
$\therefore u_{k+1}=9 u_{k}+40\left(7^{2 k-1}\right)$
As both $9 u_{k}$ and $40\left(7^{2 k-1}\right)$ are divisible by 8 then the sum of these two terms must also be divisible by 8 . Therefore u_{n} is divisible by 8 when $n=k+1$.

If u_{n} is divisible by 8 when $n=k$, then it has been shown that u_{n} is also divisible by 8 when $n=k+1$. As u_{n} is divisible by 8 when $n=1, u_{n}$ is also divisible by 8 for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Proof by mathematical induction

Exercise E, Question 10

Question:

Prove by induction, for all positive integers n, that
$(1 \times 5)+(2 \times 6)+(3 \times 7)+\geq+n(n+4)=\frac{1}{6} n(n+1)(2 n+13)$.

Solution:

The identity $(1 \times 5)+(2 \times 6)+(3 \times 7)+\geq+n(n+4)=\frac{1}{6} n(n+1)(2 n+13)$.
can be rewritten as $\sum_{r=1}^{n} r(r+4)=\frac{1}{6} n(n+1)(2 n+13)$.

$$
\begin{aligned}
n=1 ; \text { LHS } & =\sum_{r=1}^{1} r(r+4)=1(5)=5 \\
\text { RHS } & =\frac{1}{6}(1)(2)(15)=\frac{1}{6}(30)=5
\end{aligned}
$$

As LHS $=$ RHS, the summation formula is true for $n=1$.

Assume that the summation formula is true for $n=k$.
ie. $\sum_{r=1}^{k} r(r+4)=\frac{1}{6} k(k+1)(2 k+13)$.

With $n=k+1$ terms the summation formula becomes:

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r+4) & =1(5)+2(6)+3(7)+\geq+k(k+4)+(k+1)(k+5) \\
& =\frac{1}{6} k(k+1)(2 k+13)+(k+1)(k+5) \\
& =\frac{1}{6}(k+1)[k(2 k+13)+6(k+5)] \\
& =\frac{1}{6}(k+1)\left[2 k^{2}+13 k+6 k+30\right] \\
& =\frac{1}{6}(k+1)\left[2 k^{2}+19 k+30\right] \\
& =\frac{1}{6}(k+1)(k+2)(2 k+15) \\
& =\frac{1}{6}(k+1)(k+1+1)[2(k+1)+13]
\end{aligned}
$$

Therefore, summation formula is true when $n=k+1$.

If the summation formula is true for $n=k$, then it is shown to be true for $n=k+1$. As the result is true for $n=1$, it is now also true for all $n \geq 1$ and $n \in \mathbb{Z}^{+}$by mathematical induction.

